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Preface

This updated edition is intended for a one- or two-term introductory course in discrete
mathematics, based on my experience in teaching this course over many years and re-
quests from users of previous editions. Formal mathematics prerequisites are minimal;
calculus is not required. There are no computer science prerequisites. The book includes
examples, exercises, figures, tables, sections on problem-solving, sections containing
problem-solving tips, section reviews, notes, chapter reviews, self-tests, and computer
exercises to help the reader master introductory discrete mathematics. In addition, an
Instructor’s Guide and website are available.

In the early 1980s there were few textbooks appropriate for an introductory course
in discrete mathematics. However, there was a need for a course that extended students’
mathematical maturity and ability to deal with abstraction, which also included use-
ful topics such as combinatorics, algorithms, and graphs. The original edition of this
book (1984) addressed this need and significantly influenced the development of dis-
crete mathematics courses. Subsequently, discrete mathematics courses were endorsed
by many groups for several diferent audiences, including mathematics and computer
science majors. A panel of the Mathematical Association of America (MAA) endorsed
a year-long course in discrete mathematics. The Educational Activities Board of the
Institute of Electrical and Electronics Engineers (IEEE) recommended a freshman dis-
crete mathematics course. The Association for Computing Machinery (ACM) and IEEE
accreditation guidelines mandated a discrete mathematics course. This edition, like its
predecessors, includes topics such as algorithms, combinatorics, sets, functions, and
mathematical induction endorsed by these groups. It also addresses understanding and
constructing proofs and, generally, expanding mathematical maturity.

New to This Edition

The changes in this book, the eighth edition, result from comments and requests from
numerous users and reviewers of previous editions of the book. This edition includes the
following changes from the seventh edition:

■ The web icons in the seventh edition have been replaced by short URLs, making
it possible to quickly access the appropriate web page, for example, by using a
hand-held device.

■ The exercises in the chapter self-tests no longer identify the relevant sections mak-
ing the self-test more like a real exam. (The hints to these exercises do identify the
relevant sections.)

xiii
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xiv Preface

■ Examples that are worked problems clearly identify where the solution begins and
ends.

■ The number of exercises in the first three chapters (Sets and Logic; Proofs; and
Functions, Sequences, andRelations) has been increased from approximately 1640
worked examples and exercises in the seventh edition to over 1750 in the current
edition.

■ Many comments have been added to clarify potentially tricky concepts (e.g., “sub-
set” and “element of,” collection of sets, logical equivalence of a sequence of
propositions, logarithmic scale on a graph).

■ There are more examples illustrating diverse approaches to developing proofs and
alternative ways to prove a particular result [see, e.g., Examples 2.2.4 and 2.2.8;
Examples 6.1.3(c) and 6.1.12; Examples 6.7.7, 6.7.8, and 6.7.9; Examples 6.8.1
and 6.8.2].

■ A number of definitions have been revised to allow them to be more directly ap-
plied in proofs [see, e.g., one-to-one function (Definition 3.1.22) and onto function
(Definition 3.1.29)].

■ Additional real-world examples (see descriptions in the following section) are in-
cluded.

■ The altered definition of sequence (Definition 3.2.1) provides more generality and
makes subsequent discussion smoother (e.g., the discussion of subsequences).

■ Exercises have been added (Exercises 40–49, Section 5.1) to give an example of
an algebraic system in which prime factorization does not hold.

■ An application of the binomial theorem is used to prove Fermat’s little theorem
(Exercises 40 and 41, Section 6.7).

■ There is now a randomized algorithm to search for a Hamiltonian cycle in a graph
(Algorithm 8.3.10).

■ The Closest-Pair Problem (Section 13.1 in the seventh edition) has been integrated
into Chapter 7 (Recurrence Relations) in the current edition. The algorithm to solve
the closest-pair problem is based on merge sort, which is discussed and analyzed
in Chapter 7. Chapter 13 in the seventh edition, which has now been removed, had
only one additional section.

■ A number of recent books and articles have been added to the list of references,
and several book references have been updated to current editions.

■ The number of exercises has been increased to nearly 4500. (There were approx-
imately 4200 in the seventh edition.)

Contents and Structure

Content Overview

Chapter 1 Sets and Logic
Coverage includes quantifiers and features practical examples such as using the Google
search engine (Example 1.2.13). We cover translating between English and symbolic
expressions as well as logic in programming languages. We also include a logic game
(Example 1.6.15), which ofers an alternative way to determine whether a quantified
propositional function is true or false.



�

� �

�

Preface xv

Chapter 2 Proofs
Proof techniques discussed include direct proofs, counterexamples, proof by contradic-
tion, proof by contrapositive, proof by cases, proofs of equivalence, existence proofs
(constructive and nonconstructive), and mathematical induction. We present loop in-
variants as a practical application of mathematical induction. We also include a brief,
optional section on resolution proofs (a proof technique that can be automated).

Chapter 3 Functions, Sequences, and Relations
The chapter includes strings, sum and product notations, and motivating examples such
as the Luhn algorithm for computing credit card check digits, which opens the chapter.
Other examples include an introduction to hash functions (Example 3.1.15), pseudo-
random number generators (Example 3.1.16). a real-world example of function compo-
sition showing its use in making a price comparison (Example 3.1.45), an application of
partial orders to task scheduling (Section 3.3), and relational databases (Section 3.6).

Chapter 4 Algorithms
The chapter features a thorough discussion of algorithms, recursive algorithms, and the
analysis of algorithms. We present a number of examples of algorithms before getting
into big-oh and related notations (Sections 4.1 and 4.2), thus providing a gentle introduc-
tion and motivating the formalism that follows. We then continue with a full discussion
of the “big oh,” omega, and theta notations for the growth of functions (Section 4.3).
Having all of these notations available makes it possible to make precise statements
about the growth of functions and the time and space required by algorithms.

We use the algorithmic approach throughout the remainder of the book. We men-
tion that many modern algorithms do not have all the properties of classical algorithms
(e.g., manymodern algorithms are not general, deterministic, or even finite). To illustrate
the point, we give an example of a randomized algorithm (Example 4.2.4). Algorithms
are written in a flexible form of pseudocode, which resembles currently popular lan-
guages such as C, C++, and Java. (The book does not assume any computer science
prerequisites; the description of the pseudocode used is given in Appendix C.) Among
the algorithms presented are:

■ Tiling (Section 4.4)

■ Euclidean algorithm for finding the greatest common divisor (Section 5.3)

■ RSA public-key encryption algorithm (Section 5.4)

■ Generating combinations and permutations (Section 6.4)

■ Merge sort (Section 7.3)

■ Finding a closest pair of points (Section 7.4)

■ Dijkstra’s shortest-path algorithm (Section 8.4)

■ Backtracking algorithms (Section 9.3)

■ Breadth-first and depth-first search (Section 9.3)

■ Tree traversals (Section 9.6)

■ Evaluating a game tree (Section 9.9)

■ Finding a maximal flow in a network (Section 10.2)

Chapter 5 Introduction to Number Theory
The chapter includes classical results (e.g., divisibility, the infinitude of primes, funda-
mental theorem of arithmetic), as well as algorithmic number theory (e.g., the Euclidean
algorithm to find the greatest common divisor, exponentiation using repeated squaring,
computing s and t such that gcd(a, b) = sa + tb, computing an inverse modulo an inte-
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ger). Themajor application is the RSA public-key cryptosystem (Section 5.4). The calcu-
lations required by the RSA public-key cryptosystem are performed using the algorithms
previously developed in the chapter.

Chapter 6 Counting Methods and the Pigeonhole Principle
Coverage includes combinations, permutations, discrete probability (optional Sections
6.5 and 6.6), and the Pigeonhole Principle. Applications include internet addressing
(Section 6.1) and real-world pattern recognition problems in telemarketing (Example
6.6.21) and virus detection (Example 6.6.22) using Bayes’ Theorem.

Chapter 7 Recurrence Relations
The chapter includes recurrence relations and their use in the analysis of algorithms.

Chapter 8 Graph Theory
Coverage includes graph models of parallel computers, the knight’s tour, Hamiltonian
cycles, graph isomorphisms, and planar graphs. Theorem 8.4.3 gives a simple, short, el-
egant proof of the correctness of Dijkstra’s algorithm.

Chapter 9 Trees
Coverage includes binary trees, tree traversals, minimal spanning trees, decision trees,
the minimum time for sorting, and tree isomorphisms.

Chapter 10 Network Models
Coverage includes the maximal flow algorithm and matching.

Chapter 11 Boolean Algebras and Combinatorial Circuits
Coverage emphasizes the relation of Boolean algebras to combinatorial circuits.

Chapter 12 Automata, Grammars, and Languages
Our approach emphasizes modeling and applications. We discuss the SR flip-flop circuit
in Example 12.1.11, and we describe fractals, including the von Koch snowflake, which
can be described by special kinds of grammars (Example 12.3.19).

Book frontmatter and endmatter
Appendixes include coverage of matrices, basic algebra, and pseudocode. A reference
section provides more than 160 references to additional sources of information. Front
and back endpapers summarize the mathematical and algorithm notation used in the
book.

Features of Content Coverage

■ A strong emphasis on the interplay among the various topics. Examples of this
include:

• We closely tie mathematical induction to recursive algorithms (Section 4.4).

• We use the Fibonacci sequence in the analysis of the Euclidean algorithm
(Section 5.3).

• Many exercises throughout the book require mathematical induction.

• We show how to characterize the components of a graph by defining an
equivalence relation on the set of vertices (see the discussion following
Example 8.2.13).

• We count the number of nonisomorphic n-vertex binary trees (Theorem
9.8.12).

■ A strong emphasis on reading and doing proofs. We illustrate most proofs of
theorems with annotated figures and/or motivate them by special Discussion sec-
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tions. Separate sections (Problem-Solving Corners) show students how to attack
and solve problems and how to do proofs. Special end-of-section Problem-Solving
Tips highlight the main problem-solving techniques of the section.

■ A large number of applications, especially applications to computer science.
■ Figures and tables illustrate concepts, show how algorithms work, elucidate

proofs, and motivate the material. Several figures illustrate proofs of theorems.
The captions of these figures provide additional explanation and insight into the
proofs.

Textbook Structure

Each chapter is organized as follows:

Chapter X Overview
Section X.1
Section X.1 Review Exercises
Section X.1 Exercises
Section X.2
Section X.2 Review Exercises
Section X.2 Exercises

...

Chapter X Notes
Chapter X Review
Chapter X Self-Test
Chapter X Computer Exercises

In addition, most chapters have Problem-Solving Corners (see “Hallmark Features”
for more information about this feature).

Section review exercises review the key concepts, definitions, theorems, tech-
niques, and so on of the section. All section review exercises have answers in the back
of the book. Although intended for reviews of the sections, section review exercises can
also be used for placement and pretesting.

Chapter notes contain suggestions for further reading. Chapter reviews provide
reference lists of the key concepts of the chapters. Chapter self-tests contain exer-
cises based on material from throughout the chapter, with answers in the back of the
book.

Computer exercises include projects, implementation of some of the algorithms,
and other programming related activities. Although there is no programming prerequisite
for this book and no programming is introduced in the book, these exercises are provided
for those readers who want to explore discrete mathematics concepts with a computer.

Hallmark Features

Exercises

The book contains nearly 4500 exercises, approximately 150 of which are computer
exercises. We use a star to label exercises felt to be more challenging than average.
Exercise numbers in color (approximately one-third of the exercises) indicate that the
exercise has a hint or solution in the back of the book. The solutions to most of the
remaining exercises may be found in the Instructor’s Guide. A handful of exercises are
clearly identified as requiring calculus. No calculus concepts are used in the main body
of the book and, except for these marked exercises, no calculus is needed to solve the
exercises.
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Examples

The book contains almost 650 worked examples. These examples show students how to
tackle problems in discrete mathematics, demonstrate applications of the theory, clarify
proofs, and help motivate the material.

Problem-Solving Corners

The Problem-Solving Corner sections help students attack and solve problems and show
them how to do proofs. Written in an informal style, each is a self-contained section
centered around a problem. The intent of these sections is to go beyond simply presenting
a proof or a solution to the problem: we show alternative ways of attacking a problem,
discuss what to look for in trying to obtain a solution to a problem, and present problem-
solving and proof techniques.

Each Problem-Solving Corner begins with a statement of a problem. We then dis-
cuss ways to attack the problem, followed by techniques for finding a solution. After we
present a solution, we show how to correctly write it up in a formal manner. Finally, we
summarize the problem-solving techniques used in the section. Some sections include
a Comments subsection, which discusses connections with other topics in mathematics
and computer science, provides motivation for the problem, and lists references for fur-
ther reading about the problem. Some Problem-Solving Corners conclude with a few
exercises.

Supplements and Technology

Instructor’s Solution Manual (downloadable)

ISBN-10: 0–321-98309-2 | ISBN-13: 978-0–321-98309-1
The Instructor’s Guide, written by the author, provides worked-out solutions for most
exercises in the text. It is available for download to qualified instructors from the Pearson
Instructor Resource Center www.pearsonhighered.com/irc.

Web Support

The short URLs in the margin of the text provide students with direct access to relevant
content at point-of-use, including:

■ Expanded explanations of difcult material and links to other sites for additional
information about discrete mathematics topics.

■ Computer programs (in C or C++).

The URL goo.gl/fO3Crh provides access to all of the above resources plus an errata

NOTE:
When you enter URLs that
appear in the text, take care
to distinguish the following
characters:
l = lowercase l
I = uppercase I
1 = one
O = uppercase O
0 = zero

list for the text.
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Chapter 1

SETS AND LOGIC

1.1 Sets
1.2 Propositions
1.3 Conditional Propositions

and Logical Equivalence
1.4 Arguments and Rules of

Inference
1.5 Quantifiers
1.6 Nested Quantifiers

Chapter 1 begins with sets. A set is a collection of objects; order is not taken into
account. Discrete mathematics is concerned with objects such as graphs (sets of ver-
tices and edges) and Boolean algebras (sets with certain operations defined on them).
In this chapter, we introduce set terminology and notation. In Chapter 2, we treat sets
more formally after discussing proof and proof techniques. However, in Section 1.1, we
provide a taste of the logic and proofs to come in the remainder of Chapter 1 and in
Chapter 2.

Logic is the study of reasoning; it is specifically concerned with whether reasoning
is correct. Logic focuses on the relationship among statements as opposed to the content
of any particular statement. Consider, for example, the following argument:

All mathematicians wear sandals.
Anyone who wears sandals is an algebraist.
Therefore, all mathematicians are algebraists.

Technically, logic is of no help in determining whether any of these statements is true;
however, if the first two statements are true, logic assures us that the statement,

All mathematicians are algebraists,
Go Online
For more on logic, see
goo.gl/F7b35e is also true.

Logic is essential in reading and developing proofs, which we explore in detail in
Chapter 2. An understanding of logic can also be useful in clarifying ordinary writing.
For example, at one time, the following ordinance was in efect in Naperville, Illinois:
“It shall be unlawful for any person to keep more than three dogs and three cats upon
his property within the city.” Was one of the citizens, who owned five dogs and no cats,
in violation of the ordinance? Think about this question now; then analyze it (see Exer-
cise 75, Section 1.2) after reading Section 1.2.

1
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2 Chapter 1 ◆ Sets and Logic

1.1 Sets
The concept of set is basic to all of mathematics and mathematical applications. A set
is simply a collection of objects. The objects are sometimes referred to as elements or
members. If a set is finite and not too large, we can describe it by listing the elements in
it. For example, the equation

Go Online
For more on sets, see
goo.gl/F7b35e

A = {1, 2, 3, 4} (1.1.1)

describes a set A made up of the four elements 1, 2, 3, and 4. A set is determined by
its elements and not by any particular order in which the elements might be listed. Thus
the set A might just as well be specified as A = {1, 3, 4, 2}. The elements making up a
set are assumed to be distinct, and although for some reason we may have duplicates in
our list, only one occurrence of each element is in the set. For this reason we may also
describe the set A defined in (1.1.1) as A = {1, 2, 2, 3, 4}.

If a set is a large finite set or an infinite set, we can describe it by listing a property
necessary for membership. For example, the equation

B = {x | x is a positive, even integer} (1.1.2)

describes the setBmade up of all positive, even integers; that is,B consists of the integers
2, 4, 6, and so on. The vertical bar “|” is read “such that.” Equation (1.1.2) would be
read “B equals the set of all x such that x is a positive, even integer.” Here the property
necessary for membership is “is a positive, even integer.” Note that the property appears
after the vertical bar. The notation in (1.1.2) is called set-builder notation.

A set may contain any kind of elements whatsoever, and they need not be of the
same “type.” For example,

{4.5,Lady Gaga, π, 14}
is a perfectly fine set. It consists of four elements: the number 4.5, the person Lady Gaga,
the number π(= 3.1415 . . .), and the number 14.

A set may contain elements that are themselves sets. For example, the set

{3, {5, 1}, 12, {π, 4.5, 40, 16},Henry Cavill}
consists of five elements: the number 3, the set {5, 1}, the number 12, the set {π , 4.5,
40, 16}, and the person Henry Cavill.

Some sets of numbers that occur frequently in mathematics generally, and in dis-
crete mathematics in particular, are shown in Figure 1.1.1. The symbol Z comes from
the German word, Zahlen, for integer. Rational numbers are quotients of integers, thus
Q for quotient. The set of real numbers R can be depicted as consisting of all points on
a straight line extending indefinitely in either direction (see Figure 1.1.2).†

Symbol Set Example of Members

Z Integers −3, 0, 2, 145
Q Rational numbers −1/3, 0, 24/15
R Real numbers −3, −1.766, 0, 4/15,

√
2, 2.666 . . . , π

Figure 1.1.1 Sets of numbers.

†The real numbers can be constructed by starting with a more primitive notion such as “set” or “integer,” or
they can be obtained by stating properties (axioms) they are assumed to obey. For our purposes, it sufces to
think of the real numbers as points on a straight line. The construction of the real numbers and the axioms
for the real numbers are beyond the scope of this book.
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24 23 22

21.766

21 0 1 2

2.666. . .

3 4
 . . . . . . 

4
15

!2

Figure 1.1.2 The real number line.

To denote the negative numbers that belong to one of Z, Q, or R, we use the
superscript minus. For example,Z− denotes the set of negative integers, namely−1,−2,
−3, . . . . Similarly, to denote the positive numbers that belong to one of the three sets,
we use the superscript plus. For example, Q+ denotes the set of positive rational num-
bers. To denote the nonnegative numbers that belong to one of the three sets, we use the
superscript nonneg. For example,Znonneg denotes the set of nonnegative integers, namely
0, 1, 2, 3, . . . .

If X is a finite set, we let |X| = number of elements in X. We call |X| the cardi-
nality of X. There is also a notion of cardinality of infinite sets, although we will not
discuss it in this book. For example, the cardinality of the integers, Z, is denoted ℵ0, read
“aleph null.” Aleph is the first letter of the Hebrew alphabet.

Example 1.1.1 For the set A in (1.1.1), we have |A| = 4, and the cardinality of A is 4. The cardinality
of the set {R,Z} is 2 since it contains two elements, namely the two sets R and Z.

Given a description of a set X such as (1.1.1) or (1.1.2) and an element x, we can
determine whether or not x belongs to X. If the members of X are listed as in (1.1.1),
we simply look to see whether or not x appears in the listing. In a description such as
(1.1.2), we check to see whether the element x has the property listed. If x is in the set
X, we write x ∈ X, and if x is not in X, we write x /∈ X. For example, 3 ∈ {1, 2, 3, 4}, but
3 /∈ {x | x is a positive, even integer}.

The set with no elements is called the empty (or null or void) set and is denoted
∅. Thus ∅ = { }.

Two sets X and Y are equal and wewrite X = Y if X and Y have the same elements.
To put it another way, X = Y if the following two conditions hold:

■ For every x, if x ∈ X, then x ∈ Y ,

and

■ For every x, if x ∈ Y , then x ∈ X.

The first condition ensures that every element of X is an element of Y , and the second
condition ensures that every element of Y is an element of X.

Example 1.1.2 If A = {1, 3, 2} and B = {2, 3, 2, 1}, by inspection, A and B have the same elements.
Therefore A = B.

Example 1.1.3 Show that if A = {x | x2 + x − 6 = 0} and B = {2,−3}, then A = B.

SOLUTION According to the criteria in the paragraph immediately preceding Example
1.1.2, we must show that for every x,

if x ∈ A, then x ∈ B, (1.1.3)

and for every x,

if x ∈ B, then x ∈ A. (1.1.4)
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To verify condition (1.1.3), suppose that x ∈ A. Then

x2 + x − 6 = 0.

Solving for x, we find that x = 2 or x = −3. In either case, x ∈ B. Therefore, condition
(1.1.3) holds.

To verify condition (1.1.4), suppose that x ∈ B. Then x = 2 or x = −3. If x = 2,
then

x2 + x − 6 = 22 + 2 − 6 = 0.

Therefore, x ∈ A. If x = −3, then

x2 + x − 6 = (−3)2 + (−3) − 6 = 0.

Again, x∈A. Therefore, condition (1.1.4) holds. We conclude that A=B.

For a set X to not be equal to a set Y (written X �= Y), X and Y must not have the
same elements: There must be at least one element in X that is not in Y or at least one
element in Y that is not in X (or both).

Example 1.1.4 Let A = {1, 2, 3} and B = {2, 4}. Then A �= B since there is at least one element in A
(1 for example) that is not in B. [Another way to see that A �= B is to note that there is
at least one element in B (namely 4) that is not in A.]

Suppose that X and Y are sets. If every element of X is an element of Y , we say
that X is a subset of Y and write X ⊆ Y . In other words, X is a subset of Y if for every
x, if x ∈ X, then x ∈ Y .

Example 1.1.5 If C = {1, 3} and A = {1, 2, 3, 4}, by inspection, every element of C is an element of A.
Therefore, C is a subset of A and we write C ⊆ A.

Example 1.1.6 Let X = {x | x2 + x − 2 = 0}. Show that X ⊆ Z.

SOLUTION We must show that for every x, if x ∈ X, then x ∈ Z. If x ∈ X, then
x2 + x − 2 = 0. Solving for x, we obtain x = 1 or x = −2. In either case, x ∈ Z.
Therefore, for every x, if x ∈ X, then x ∈ Z. We conclude that X is a subset of Z and we
write X ⊆ Z.

Example 1.1.7 The set of integers Z is a subset of the set of rational numbers Q. If n ∈ Z, n can
be expressed as a quotient of integers, for example, n = n/1. Therefore n ∈ Q and
Z ⊆ Q.

Example 1.1.8 The set of rational numbers Q is a subset of the set of real numbers R. If x ∈ Q, x cor-
responds to a point on the number line (see Figure 1.1.2) so x ∈ R.

For X to not be a subset of Y , there must be at least one member of X that is not
in Y .

Example 1.1.9 Let X = {x | 3x2 − x − 2 = 0}. Show that X is not a subset of Z.
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SOLUTION If x ∈ X, then 3x2−x−2 = 0. Solving for x, we obtain x = 1 or x = −2/3.
Taking x = −2/3, we have x ∈ X but x /∈ Z. Therefore, X is not a subset of Z.

Any set X is a subset of itself, since any element in X is in X. Also, the empty set
is a subset of every set. If ∅ is not a subset of some set Y , according to the discussion
preceding Example 1.1.9, there would have to be at least one member of ∅ that is not in
Y . But this cannot happen because the empty set, by definition, has no members.

Notice the diference between the terms “subset” and “element of.” The set X is a
subset of the set Y(X ⊆ Y), if every element of X is an element of Y; x is an element of
X(x ∈ X), if x is a member of the set X.

Example 1.1.10 Let X = {1, 3, 5, 7} and Y = {1, 2, 3, 4, 5, 6, 7}. Then X ⊆ Y since every element of X
is an element of Y . But X /∈ Y , since the set X is not a member of Y . Also, 1 ∈ X, but
1 is not a subset of X. Notice the diference between the number 1 and the set {1}. The
set {1} is a subset of X.

If X is a subset of Y and X does not equal Y , we say that X is a proper subset of
Y and write X ⊂ Y .

Example 1.1.11 Let C = {1, 3} and A = {1, 2, 3, 4}. Then C is a proper subset of A since C is a subset
of A but C does not equal A. We write C ⊂ A.

Example 1.1.12 Example 1.1.7 showed that Z is a subset ofQ. In fact, Z is a proper subset ofQ because,
for example, 1/2 ∈ Q, but 1/2 �∈ Z.

Example 1.1.13 Example 1.1.8 showed thatQ is a subset ofR. In fact,Q is a proper subset ofR because,
for example,

√
2 ∈ R, but

√
2 �∈ Q. (In Example 2.2.3, we will show that

√
2 is not the

quotient of integers).

The set of all subsets (proper or not) of a set X, denoted P(X), is called the power
set of X.

Example 1.1.14 If A = {a, b, c}, the members of P(A) are

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.
All but {a, b, c} are proper subsets of A.

In Example 1.1.14, |A| = 3 and |P(A)| = 23 = 8. In Section 2.4 (Theorem 2.4.6),
we will give a formal proof that this result holds in general; that is, the power set of a
set with n elements has 2n elements.

Given two sets X and Y , there are various set operations involving X and Y that
can produce a new set. The set

X ∪ Y = {x | x ∈ X or x ∈ Y}
is called the union of X and Y . The union consists of all elements belonging to either X
or Y (or both).

The set

X ∩ Y = {x | x ∈ X and x ∈ Y}
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is called the intersection of X and Y . The intersection consists of all elements belonging
to both X and Y .

The set

X − Y = {x | x ∈ X and x /∈ Y}
is called the diference (or relative complement). The diference X − Y consists of all
elements in X that are not in Y .

Example 1.1.15 If A = {1, 3, 5} and B = {4, 5, 6}, then
A ∪ B = {1, 3, 4, 5, 6}
A ∩ B = {5}
A − B = {1, 3}
B − A = {4, 6}.

Notice that, in general, A − B �= B − A.

Example 1.1.16 Since Q ⊆ R,

R ∪ Q = R

R ∩ Q = Q

Q − R = ∅.

The set R − Q, called the set of irrational numbers, consists of all real numbers that
are not rational.

We call a set S, whose elements are sets, a collection of sets or a family of sets.
For example, if

S = {{1, 2}, {1, 3}, {1, 7, 10}},
then S is a collection or family of sets. The set S consists of the sets

{1, 2}, {1, 3}, {1, 7, 10}.
Sets X and Y are disjoint if X∩Y = ∅. A collection of sets S is said to be pairwise

disjoint if, whenever X and Y are distinct sets in S, X and Y are disjoint.

Example 1.1.17 The sets {1, 4, 5} and {2, 6} are disjoint. The collection of setsS = {{1, 4, 5}, {2, 6}, {3},
{7, 8}} is pairwise disjoint.

Sometimes we are dealing with sets, all of which are subsets of a set U. This set
U is called a universal set or a universe. The set U must be explicitly given or inferred
from the context. Given a universal set U and a subset X of U, the set U − X is called
the complement of X and is written X.

Example 1.1.18 LetA = {1, 3, 5}. IfU, a universal set, is specified asU = {1, 2, 3, 4, 5}, thenA = {2, 4}.
If, on the other hand, a universal set is specified as U = {1, 3, 5, 7, 9}, then A = {7, 9}.
The complement obviously depends on the universe in which we are working.

Example 1.1.19 Let the universal set be Z. Then Z−, the complement of the set of negative integers, is
Znonneg, the set of nonnegative integers.
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Venn diagrams provide pictorial views of sets. In a Venn diagram, a rectangle de-
picts a universal set (see Figure 1.1.3). Subsets of the universal set are drawn as circles.

Go Online
For more on Venn
diagrams, see
goo.gl/F7b35e

The inside of a circle represents the members of that set. In Figure 1.1.3 we see two sets
A and B within the universal set U. Region 1 represents (A ∪ B), the elements in neither
A nor B. Region 2 represents A− B, the elements in A but not in B. Region 3 represents
A ∩ B, the elements in both A and B. Region 4 represents B − A, the elements in B but
not in A.

U

A B

1

2 3 4

Figure 1.1.3 A Venn
diagram.

Example 1.1.20 Particular regions in Venn diagrams are depicted by shading. The set A ∪ B is shown in
Figure 1.1.4, and Figure 1.1.5 represents the set A − B.

A B

U

Figure 1.1.4 A Venn
diagram of A ∪ B.

A B

U

Figure 1.1.5 A Venn
diagram of A − B.

CALC PSYCH

COMPSCI9

34 12 47

25 8 16
14

U

Figure 1.1.6 A Venn diagram
of three sets CALC, PSYCH,
and COMPSCI. The numbers
show how many students belong
to the particular region depicted.

To represent three sets, we use three overlapping circles (see Figure 1.1.6).

Example 1.1.21 Among a group of 165 students, 8 are taking calculus, psychology, and computer science;
33 are taking calculus and computer science; 20 are taking calculus and psychology;
24 are taking psychology and computer science; 79 are taking calculus; 83 are taking
psychology; and 63 are taking computer science. How many are taking none of the three
subjects?

SOLUTION Let CALC, PSYCH, and COMPSCI denote the sets of students taking
calculus, psychology, and computer science, respectively. Let U denote the set of all
165 students (see Figure 1.1.6). Since 8 students are taking calculus, psychology, and
computer science, we write 8 in the region representing CALC∩ PSYCH∩COMPSCI.
Of the 33 students taking calculus and computer science, 8 are also taking psychol-
ogy; thus 25 are taking calculus and computer science but not psychology. We write
25 in the region representing CALC ∩ PSYCH ∩ COMPSCI. Similarly, we write 12 in
the region representing CALC ∩ PSYCH ∩ COMPSCI and 16 in the region repre-
senting CALC ∩ PSYCH ∩ COMPSCI. Of the 79 students taking calculus, 45 have
now been accounted for. This leaves 34 students taking only calculus. We write 34 in
the region representing CALC ∩ PSYCH ∩ COMPSCI. Similarly, we write 47 in the
region representing CALC ∩ PSYCH ∩ COMPSCI and 14 in the region representing
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CALC ∩ PSYCH ∩ COMPSCI. At this point, 156 students have been accounted for.
This leaves 9 students taking none of the three subjects.

A B

U

Figure 1.1.7 The
shaded region depicts
both (A ∪ B) and
A ∩ B; thus these sets
are equal.

Venn diagrams can also be used to visualize certain properties of sets. For exam-
ple, by sketching both (A ∪ B) and A ∩ B (see Figure 1.1.7), we see that these sets are
equal. A formal proof would show that for every x, if x ∈ (A ∪ B), then x ∈ A∩B, and if
x ∈ A∩B, then x ∈ (A ∪ B). We state many useful properties of sets as Theorem 1.1.22.

Theorem 1.1.22 Let U be a universal set and let A, B, and C be subsets of U. The following properties
hold.

(a) Associative laws:

(A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C)

(b) Commutative laws:

A ∪ B = B ∪ A, A ∩ B = B ∩ A

(c) Distributive laws:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

(d) Identity laws:

A ∪ ∅ = A, A ∩ U = A

(e) Complement laws:

A ∪ A = U, A ∩ A = ∅

(f) Idempotent laws:

A ∪ A = A, A ∩ A = A

(g) Bound laws:

A ∪ U = U, A ∩ ∅ = ∅

(h) Absorption laws:

A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A

(i) Involution law:

A = A†

(j) 0/1 laws:

∅ = U, U = ∅

(k) De Morgan’s laws for sets:

(A ∪ B) = A ∩ B, (A ∩ B) = A ∪ B

Proof The proofs are left as exercises (Exercises 46–56, Section 2.1) to be done after

Go Online
For a biography of
De Morgan, see
goo.gl/F7b35e

more discussion of logic and proof techniques.

We define the union of a collection of sets S to be those elements x belonging to
at least one set X in S. Formally,

∪S = {x | x ∈ X for some X ∈ S}.

†A denotes the complement of the complement of A, that is, A = (A).
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Similarly, we define the intersection of a collection of sets S to be those elements x
belonging to every set X in S. Formally,

∩S = {x | x ∈ X for all X ∈ S}.

Example 1.1.23 Let S = {{1, 2}, {1, 3}, {1, 7, 10}}. Then∪S = {1, 2, 3, 7, 10} since each of the elements
1, 2, 3, 7, 10 belongs to at least one set in S, and no other element belongs to any of the
sets in S. Also ∩S = {1} since only the element 1 belong to every set in S.

If

S = {A1,A2, . . . ,An},
we write

⋃
S =

n⋃
i=1

Ai,
⋂

S =
n⋂

i=1

Ai,

and if

S = {A1,A2, . . .},
we write

⋃
S =

∞⋃
i=1

Ai,
⋂

S =
∞⋂
i=1

Ai.

Example 1.1.24 For i ≥ 1, define Ai = {i, i + 1, . . .} and S = {A1,A2, . . .}. As examples,
A1 = {1, 2, 3, . . .} and A2 = {2, 3, 4, . . .}. Then

⋃
S =

∞⋃
i=1

Ai = {1, 2, . . .},
⋂

S =
∞⋂
i=1

Ai = ∅.

A partition of a set X divides X into nonoverlapping subsets. More formally, a
collection S of nonempty subsets of X is said to be a partition of the set X if every
element in X belongs to exactly one member of S. Notice that if S is a partition of X, S
is pairwise disjoint and ∪S = X.

Example 1.1.25 Since each element of X = {1, 2, 3, 4, 5, 6, 7, 8} is in exactly one member of
S = {{1, 4, 5}, {2, 6}, {3}, {7, 8}} , S is a partition of X.

At the beginning of this section, we pointed out that a set is an unordered collection
of elements; that is, a set is determined by its elements and not by any particular order
in which the elements are listed. Sometimes, however, we do want to take order into
account. An ordered pair of elements, written (a, b), is considered distinct from the or-
dered pair (b, a), unless, of course, a = b. To put it another way, (a, b) = (c, d) precisely
when a = c and b = d. If X and Y are sets, we let X × Y denote the set of all ordered
pairs (x, y) where x ∈ X and y ∈ Y . We call X × Y the Cartesian product of X and Y .

Example 1.1.26 If X = {1, 2, 3} and Y = {a, b}, then
X × Y = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}
Y × X = {(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)}
X × X = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}
Y × Y = {(a, a), (a, b), (b, a), (b, b)}.




